Прежде чем рассматривать широко используемые современными организациями модели и задачи, для решения которых они наиболее пригодны, необходимо вкратце описать три базовых типа моделей. Речь идет о физических, аналоговых и математических моделях.
Физическая модель.
Физическая модель представляет то, что исследуется, с помощью увеличенного или уменьшенного описания объекта или системы. Как указывает Шеннон: «Отличительная характеристика физической (называемой иногда «портретной») модели состоит в том, что в некотором смысле она выглядит как моделируемая целостность».
Примеры физической модели — синька чертежа завода, его уменьшенная фактическая модель, уменьшенный в определенном масштабе чертеж проектировщика. Такая физическая модель упрощает визуальное восприятие и помогает установить, сможет ли конкретное оборудование физически разместиться в пределах отведенного для него места, а также разрешить сопряженные проблемы, например, размещение дверей, ускоряющее движение людей и материалов. Автомобильные и авиационные предприятия всегда изготавливают физические уменьшенные копии новых средств передвижения, чтобы проверить определенные характеристики типа аэродинамического сопротивления. Будучи точной копией, модель должна вести себя аналогично разрабатываемому новому автомобилю или самолету, но при этом стоит она много меньше настоящего. Подобным образом строительная компания всегда строит миниатюрную модель, прежде чем начать строительство производственного или административного корпуса или склада.
Аналоговая модель.
Аналоговая модель представляет исследуемый объект аналогом, который ведет себя как реальный объект, но не выглядит как таковой. График, иллюстрирующий соотношения между объемом производства и издержками, является аналоговой моделью. График показывает, как влияет уровень производства на издержки.
Другой пример аналоговой модели — организационная схема. Выстраивая ее, руководство в состоянии легко представить себе цепи прохождения команд и формальную зависимость между индивидами и деятельностью. Такая аналоговая модель явно более простой и эффективный способ восприятия и проявления сложных взаимосвязей структуры крупной организации, чем, скажем, составление перечня взаимосвязей всех работников.
Математическая модель.
В математической модели, называемой также символической, используются символы для описания свойств или характеристик объекта или события. Пример математической модели и аналитической ее силы как средства, помогающего нам понимать исключительно сложные проблемы, — известная формула Эйнштейна Е = mс2. Если бы Эйнштейн не смог построить эту математическую модель, в которой символы заменяют реальность, маловероятно, чтобы у физиков появилась даже отдаленная идея о взаимосвязи материи и энергии.
Вероятно, математические модели относятся к типу моделей, чаще всего используемых при принятии организационных решений.
Процесс построения модели
Построение модели, как и управление, является процессом. Основные этапы процесса — постановка задачи, построение, проверка на достоверность, применение и обновление модели.
Постановка задачи.
Первый и наиболее важный этап построения модели, способный обеспечить правильное решение управленческой проблемы, состоит в постановке задачи. Правильное использование математики или компьютера не принесет никакой пользы, если сама проблема не будет точно диагностирована. Согласно Шеннону: «Альберт Эйнштейн однажды сказал, что правильная постановка задачи важнее даже, чем ее решение. Для нахождения приемлемого или оптимального решения задачи нужно знать, в чем она состоит. Как ни просто и прозрачно данное утверждение, чересчур многие специалисты в науке управления игнорируют очевидное. Миллионы долларов расходуются ежегодно на поиск элегантных и глубокомысленных ответов на неверно поставленные вопросы».
Рассматривая эту тему, Чарлз Дж. Хитч, работавший ранее в министерстве обороны, указывает: «По опыту знаю, что самое трудное для специалиста по системному анализу — не техника анализа. По сути дела, методы, используемые нами в бюро министра обороны, как правило, просты и старомодны. Полезного и продуктивного аналитика отличает умение сформулировать (спроектировать) задачу».
Далее, из того только, что руководитель осведомлен о наличии проблемы, вовсе не следует факт идентификации истинной проблемы. Руководитель обязан уметь отличать симптомы от причин. Рассмотрим для примера фармацевтическую компанию, получающую множество жалоб от аптек из-за задержек с выполнением их заказов. Истинная проблема, как оказалось, не в этой задержке. Изучение вопроса показало, что заказы задерживаются из-за производственных затруднений на трех химических предприятиях фирмы. Это было вызвано нехваткой исходных химических реагентов и запасных частей к оборудованию, что в свою очередь было обусловлено некачественным прогнозированием потребности в материалах и запасных частях.
Построение модели.
После правильной постановки задачи следующим этапом процесса предусмотрено построение модели. Разработчик должен определить главную цель модели, какие выходные нормативы или информацию предполагается получить, используя модель, чтобы помочь руководству разрешить стоящую перед ним проблему. Если продолжить приведенный выше пример, нужная выходная информация должна представлять точные нормативы времени и количества подлежащих заказу исходных материалов и запасных частей.
В дополнение к установлению главных целей, специалист по науке управления должен определить — какая информация требуется для построения модели, удовлетворяющей этим целям и выдающей на выходе нужные сведения. В нашем случае необходимой информацией будет точный прогноз потребности по каждому исходному реагенту, сведения о характере закупаемых материалов в каждом виде продукции, ожидаемой долговечности деталей оборудования, сроке службы каждой детали и т.п.
Может случиться, часто с известной долей вероятности, что эта необходимая информация разбросана по многим источникам.
К другим факторам, требующим учета при построении модели, следует отнести расходы и реакцию людей. Модель, которая стоит больше, чем вся задача, требующая решения с помощью модели, конечно, не внесет никакого вклада в приближение к целям организации. Подобным образом, излишне сложная модель может быть воспринята конечными пользователями как угроза и отвергнута ими. Таким образом, для построения эффективной модели руководителям и специалистам по науке управления следует работать вместе, взаимно увязывая потребности каждой стороны. Школа научного управления признает эти потенциальные проблемы.
Проверка модели на достоверность.
После построения модели ее следует проверить на достоверность. Один из аспектов проверки заключается в определении степени соответствия модели реальному миру. Специалист по науке управления должен установить — все ли существенные компоненты реальной ситуации встроены в модель. Это, конечно, может оказаться непростым делом, если задача сложна. Проверка многих моделей управления показала, что они несовершенны, поскольку не охватывают всех релевантных переменных. Естественно, чем лучше модель отражает реальный мир, тем выше ее потенциал как средства оказания помощи руководителю в принятии хорошего решения, если предположить, что модель не слишком сложна в использовании.
Второй аспект проверки модели связан с установлением степени, в которой информация, получаемая с ее помощью, действительно помогает руководству совладать с проблемой.
Продолжим наш пример. Если бы модель для фармацевтической фирмы действительно снабдила руководство достоверной информацией о том, как часто и в каких количествах следует заказывать материалы и запасные части, ее можно было считать полезной, поскольку выходная информация позволила бы руководству принять эффективные корректирующие меры в отношении задержек поставок.
Хороший способ проверки модели заключается в опробовании ее на ситуации из прошлого. Фармацевтическая фирма могла бы приложить свою модель к разрешению проблемы запасов за последние три года. Если модель точна, решение проблемы запасов с использованием конкретных количественных и временных показателей должно выявить конкретные причины, приведшие к задержкам. Руководство могло бы также определить, смогла ли полученная на модели информация (если ее удалось бы получить) помочь в разрешении производственных трудностей и ликвидации задержек.
Применение модели.
После проверки на достоверность модель готова к использованию. Как говорит Шеннон, ни одну модель науки управления «нельзя считать успешно выстроенной, пока она не принята, не понята и не применена на практике» . Это кажется очевидным, но зачастую оказывается одним из самых тревожных моментов построения модели. Согласно одному обследованию отделов, анализирующих операции на корпоративном уровне, лишь около 60% моделей науки управления были использованы в полной или почти полной мере. В других обследованиях также установлено, что финансовые руководители американских корпораций и западноевропейские управляющие маркетингом недостаточно широко используют модели для принятия решений. Основная причина недоиспользования моделей руководителями, которые должны их применять, возможно заключается в том, что они их опасаются или не понимают.
Если модели науки управления создаются специалистами штабных служб (а так обычно и бывает), линейные руководители, для которых они предназначены, должны принимать участие в постановке задачи и установлении требований по информации, получаемой из модели. Согласно исследованиям, когда это имеет место, применение моделей увеличивается на 50%. Кроме того, таких руководителей следует научить использовать модели, объяснив среди прочего, как модель функционирует, каковы ее потенциальные возможности и ограничения.
Обновление модели.
Даже если применение модели оказалось успешным, почти наверняка она потребует обновления. Руководство может обнаружить, что форма выходных данных не ясна или желательны дополнительные данные. Если цели организации изменяются таким образом, что это влияет на критерии принятия решений, модель необходимо соответствующим образом модифицировать. Аналогичным образом, изменение во внешнем окружении — например, появление новых потребителей, поставщиков или технологии — может обесценить допущения и исходную информацию, на которых основывалась модель при построении.